Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
J Immunol ; 206(11): 2527-2535, 2021 06 01.
Article in English | MEDLINE | ID: covidwho-1227097

ABSTRACT

The T cell response is an important detection index in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine development. The present study was undertaken to determine the T cell epitopes in the spike (S) protein of SARS-CoV-2 that dominate the T cell responses in SARS-CoV-2-infected patients. PBMCs from rhesus macaques vaccinated with a DNA vaccine encoding the full-length S protein were isolated, and an ELISPOT assay was used to identify the recognized T cell epitopes among a total of 158 18-mer and 10-aa-overlapping peptides spanning the full-length S protein. Six multipeptide-based epitopes located in the S1 region, with four of the six located in the receptor-binding domain, were defined as the most frequently recognized epitopes in macaques. The conservation of the epitopes across species was also verified, and peptide mixtures for T cell response detection were established. Six newly defined T cell epitopes were found in the current study, which may provide a novel potential target for T cell response detection and the diagnosis and vaccine design of SARS-CoV-2 based on multipeptide subunit-based epitopes.


Subject(s)
Epitopes, T-Lymphocyte/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Animals , Macaca mulatta
2.
Emerg Microbes Infect ; 10(1): 342-355, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1069193

ABSTRACT

The current study aims to develop a safe and highly immunogenic COVID-19 vaccine. The novel combination of a DNA vaccine encoding the full-length Spike (S) protein of SARS-CoV-2 and a recombinant S1 protein vaccine induced high level neutralizing antibody and T cell immune responses in both small and large animal models. More significantly, the co-delivery of DNA and protein components at the same time elicited full protection against intratracheal challenge of SARS-CoV-2 viruses in immunized rhesus macaques. As both DNA and protein vaccines have been proven safe in previous human studies, and DNA vaccines are capable of eliciting germinal center B cell development, which is critical for high-affinity memory B cell responses, the DNA and protein co-delivery vaccine approach has great potential to serve as a safe and effective approach to develop COVID-19 vaccines that provide long-term protection.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , Spike Glycoprotein, Coronavirus/immunology , Vaccines, DNA/immunology , Vaccines, Subunit/immunology , Animals , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Cell Line , DNA/immunology , HEK293 Cells , Humans , Lymphocyte Count , Macaca mulatta , Mice , Mice, Inbred C57BL , Plasmids/genetics , Rabbits , Recombinant Proteins/immunology , SARS-CoV-2/genetics , SARS-CoV-2/immunology , T-Lymphocytes/immunology
3.
J Med Virol ; 92(9): 1609-1614, 2020 09.
Article in English | MEDLINE | ID: covidwho-46751

ABSTRACT

Since the outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in humans in late 2019, it has rapidly spread worldwide. To identify the biological characteristics of SARS-CoV-2 in a normal laboratory environment (biosafety level 2 [BSL-2]), a lentiviral-based nucleocapsid was used to carry the spike protein of SARS-CoV-2 onto the surface of pseudoviral particles as a surrogate model to evaluate the infective characterization of SARS-CoV-2. This study indicated that SARS-CoV-2 has extensive tissue tropism for humans and may infect monkeys and tree shrews but not rodents. More importantly, the use of pseudoviral particles in this study allows rapid assessment of neutralizing antibodies in serum in a BSL-2 laboratory. This study will provide a quick and easy tool for evaluating neutralizing antibodies in the serum of recovering patients and assessing the potency of candidate vaccines.


Subject(s)
COVID-19/virology , Genetic Engineering , Recombination, Genetic , SARS-CoV-2/genetics , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , COVID-19/prevention & control , Cell Line , Cells, Cultured , Genes, Reporter , Humans , Neutralization Tests , Organ Specificity , SARS-CoV-2/physiology , Species Specificity , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Transduction, Genetic , Viral Vaccines , Virion/genetics
SELECTION OF CITATIONS
SEARCH DETAIL